ETRI IVCL 1.0.0
Acceleration SW Platform for Ondevice
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Classes | Functions | Variables
deployment Namespace Reference

Classes

class  inverse_warp_get_cost
 

Functions

def load_as_float (path)
 
def load_as_uchar (path)
 
def get_intrinsic (json_path)
 
def get_extrinsic (json_path)
 
def np2Depth (input_tensor, invaild_mask)
 
def showdepth (predict_depths, b_idx)
 show depth More...
 
def main ()
 Main function to test. More...
 

Variables

 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
bool scaling = True
 
int scaled_width = 480
 
int scaled_height = 352
 
float dmin = 0.5
 
float dmax = 32.0
 
int level = 64
 
 root_dir = Path('sample/0000')
 
 gInverse_warp_and_ncc = inverse_warp_get_cost(num_workers=1)
 CONSTRUCTOR CALL LOCATION IS VERY IMPORTANT. More...
 

Function Documentation

◆ get_extrinsic()

def deployment.get_extrinsic (   json_path)

◆ get_intrinsic()

def deployment.get_intrinsic (   json_path)

◆ load_as_float()

def deployment.load_as_float (   path)

◆ load_as_uchar()

def deployment.load_as_uchar (   path)

◆ main()

def deployment.main ( )

Main function to test.

◆ np2Depth()

def deployment.np2Depth (   input_tensor,
  invaild_mask 
)

◆ showdepth()

def deployment.showdepth (   predict_depths,
  b_idx 
)

show depth

Parameters
predict_depthsModel output result

Variable Documentation

◆ device

deployment.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

◆ dmax

float deployment.dmax = 32.0

◆ dmin

float deployment.dmin = 0.5

◆ gInverse_warp_and_ncc

deployment.gInverse_warp_and_ncc = inverse_warp_get_cost(num_workers=1)

CONSTRUCTOR CALL LOCATION IS VERY IMPORTANT.

◆ level

int deployment.level = 64

◆ root_dir

deployment.root_dir = Path('sample/0000')

◆ scaled_height

int deployment.scaled_height = 352

◆ scaled_width

int deployment.scaled_width = 480

◆ scaling

bool deployment.scaling = True