ETRI IVCL 1.0.0
Acceleration SW Platform for Ondevice
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Functions | Variables
train Namespace Reference

Functions

def save_checkpoint (save_path, epoch, depthNet, optimizer, is_best, filename='checkpoint.pth')
 model save method #### More...
 
def save_urgentstop (save_path, depthNet_state, filename='urgentstop.pth')
 
def save_path_formatter (args, parser)
 
def main ()
 
def np2Depth (input_tensor, invaild_mask)
 
def showdepth (predict_depths, gt_depth, b_idx)
 
def train (epoch, train_loader, HCDepthNet, optimizer, epoch_length, train_writer)
 
def validate (epoch, val_loader, HCDepthNet, epoch_length, validating_writer)
 

Variables

 parser
 
 metavar
 
 help
 
 type
 
 int
 
 default
 
 float
 
 dest
 
 None
 
 action
 
bool scaling = True
 
int best_error = -1
 
 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
int scaled_width = 480
 
int scaled_height = 352
 
float dmin = 0.5
 
float dmax = 32.0
 
int level = 64
 

Function Documentation

◆ main()

def train.main ( )

◆ np2Depth()

def train.np2Depth (   input_tensor,
  invaild_mask 
)

◆ save_checkpoint()

def train.save_checkpoint (   save_path,
  epoch,
  depthNet,
  optimizer,
  is_best,
  filename = 'checkpoint.pth' 
)

model save method ####

◆ save_path_formatter()

def train.save_path_formatter (   args,
  parser 
)

◆ save_urgentstop()

def train.save_urgentstop (   save_path,
  depthNet_state,
  filename = 'urgentstop.pth' 
)

◆ showdepth()

def train.showdepth (   predict_depths,
  gt_depth,
  b_idx 
)

◆ train()

def train.train (   epoch,
  train_loader,
  HCDepthNet,
  optimizer,
  epoch_length,
  train_writer 
)

◆ validate()

def train.validate (   epoch,
  val_loader,
  HCDepthNet,
  epoch_length,
  validating_writer 
)

Variable Documentation

◆ action

train.action

◆ best_error

int train.best_error = -1

◆ default

train.default

◆ dest

train.dest

◆ device

train.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

◆ dmax

float train.dmax = 32.0

◆ dmin

float train.dmin = 0.5

◆ float

train.float

◆ help

train.help

◆ int

train.int

◆ level

int train.level = 64

◆ metavar

train.metavar

◆ None

train.None

◆ parser

train.parser
Initial value:
1= argparse.ArgumentParser(description='Multi-view depth estimation',
2 formatter_class=argparse.ArgumentDefaultsHelpFormatter)

◆ scaled_height

int train.scaled_height = 352

◆ scaled_width

int train.scaled_width = 480

◆ scaling

bool train.scaling = True

◆ type

train.type