![]() |
ETRI IVCL 1.0.0
Acceleration SW Platform for Ondevice
|
Functions | |
| def | make_colorwheel () |
| Public Function ##########. More... | |
| def | flow_uv_to_colors (u, v, convert_to_bgr=False) |
| def | flow_to_color (flow_uv, clip_flow=None, convert_to_bgr=False) |
| def | trans_SAIs_to_LF (imgSAIs) |
| def | trans_order (imgSAIs) |
| def | shift_value_5x5 (i, shift_val) |
| def | index_picker_5x5 (i) |
| def | image_data_center (batch_size=1, data_path=None, source='train_source') |
| def | image_data (batch_size=1, data_path=None, source='train_source', sai=25) |
| def | input_shifting (center=None, batch_size=1, sai=27, shift_val=0.7) |
| def | slice_warp (shift, flow_h, flow_v, sai) |
| def | slice_warp2 (shift, flow_h, flow_v, sai) |
| def | change_order (imgs, batch_size) |
| def | l_loss (imgs, lables, batch_size) |
| def | denseUNet (input, batch_size) |
| Fundamental Network ##########. More... | |
| def | denseUNet_train (script_path=None, data_path=None, tot=1, sai=25, shift_val=0.7, batch_size=1) |
| Network Generator ##########. More... | |
| def | denseUNet_test (script_path=None, data_path=None, tot=1, sai=25, shift_val=0.7, batch_size=1) |
| def | denseUNet_deploy (script_path=None, batch_size=1, sai=25, shift_val=0.7) |
| def | denseUNet_solver (script_train_path=None, script_test_path=None, solver_path=None, snapshot_path=None) |
| Solver Generator ##########. More... | |
| def | denseUNet_runner (script_path=None, model_path=None, src_color=None, n=None) |
| Runner ##########. More... | |
| def | denseUNet_tester (script_path=None, model_path=None, dataset_path=None, output_predict_path=None, output_GT_path=None, test_range=1) |
| Tester ##########. More... | |
Variables | |
| threshold | |
| string | TRAINSET_PATH = './datas/face_dataset/face_train_9x9' |
| Main ##########. More... | |
| string | TESTSET_PATH = './datas/face_dataset/face_test_9x9' |
| string | MODEL_PATH = './backup/denseUNet_best.caffemodel' |
| string | TRAIN_PATH = './scripts/denseUNet_train.prototxt' |
| string | TEST_PATH = './scripts/denseUNet_test.prototxt' |
| string | DEPLOY_PATH = './scripts/denseUNet_deploy.prototxt' |
| string | SOLVER_PATH = './scripts/denseUNet_solver.prototxt' |
| string | OUTPUT_PREDICT = './output/predict' |
| string | OUTPUT_GT = './output/GT' |
| int | TRAIN_TOT = 1207 |
| int | SAI = 25 |
| float | SHIFT_VAL = 0.77625 |
| string | MOD = 'test' |
| script_path | |
| data_path | |
| tot | |
| sai | |
| batch_size | |
| shift_val | |
| script_train_path | |
| script_test_path | |
| solver_path | |
| snapshot_path | |
| solver = caffe.get_solver(SOLVER_PATH) | |
| model_path | |
| dataset_path | |
| output_predict_path | |
| output_GT_path | |
| test_range | |
| test_img = cv2.imread('./test.png', 1) | |
| test_list | |
| flow_color_list | |
| src_color | |
| n | |
| def denseUNet_best.change_order | ( | imgs, | |
| batch_size | |||
| ) |
| def denseUNet_best.denseUNet | ( | input, | |
| batch_size | |||
| ) |
Fundamental Network ##########.
| def denseUNet_best.denseUNet_deploy | ( | script_path = None, |
|
batch_size = 1, |
|||
sai = 25, |
|||
shift_val = 0.7 |
|||
| ) |
| def denseUNet_best.denseUNet_runner | ( | script_path = None, |
|
model_path = None, |
|||
src_color = None, |
|||
n = None |
|||
| ) |
Runner ##########.
| def denseUNet_best.denseUNet_solver | ( | script_train_path = None, |
|
script_test_path = None, |
|||
solver_path = None, |
|||
snapshot_path = None |
|||
| ) |
Solver Generator ##########.
| def denseUNet_best.denseUNet_test | ( | script_path = None, |
|
data_path = None, |
|||
tot = 1, |
|||
sai = 25, |
|||
shift_val = 0.7, |
|||
batch_size = 1 |
|||
| ) |
| def denseUNet_best.denseUNet_tester | ( | script_path = None, |
|
model_path = None, |
|||
dataset_path = None, |
|||
output_predict_path = None, |
|||
output_GT_path = None, |
|||
test_range = 1 |
|||
| ) |
Tester ##########.
| def denseUNet_best.denseUNet_train | ( | script_path = None, |
|
data_path = None, |
|||
tot = 1, |
|||
sai = 25, |
|||
shift_val = 0.7, |
|||
batch_size = 1 |
|||
| ) |
Network Generator ##########.
| def denseUNet_best.flow_to_color | ( | flow_uv, | |
clip_flow = None, |
|||
convert_to_bgr = False |
|||
| ) |
| def denseUNet_best.flow_uv_to_colors | ( | u, | |
| v, | |||
convert_to_bgr = False |
|||
| ) |
| def denseUNet_best.image_data | ( | batch_size = 1, |
|
data_path = None, |
|||
source = 'train_source', |
|||
sai = 25 |
|||
| ) |
| def denseUNet_best.image_data_center | ( | batch_size = 1, |
|
data_path = None, |
|||
source = 'train_source' |
|||
| ) |
| def denseUNet_best.index_picker_5x5 | ( | i | ) |
| def denseUNet_best.input_shifting | ( | center = None, |
|
batch_size = 1, |
|||
sai = 27, |
|||
shift_val = 0.7 |
|||
| ) |
| def denseUNet_best.l_loss | ( | imgs, | |
| lables, | |||
| batch_size | |||
| ) |
| def denseUNet_best.make_colorwheel | ( | ) |
Public Function ##########.
| def denseUNet_best.shift_value_5x5 | ( | i, | |
| shift_val | |||
| ) |
| def denseUNet_best.slice_warp | ( | shift, | |
| flow_h, | |||
| flow_v, | |||
| sai | |||
| ) |
| def denseUNet_best.slice_warp2 | ( | shift, | |
| flow_h, | |||
| flow_v, | |||
| sai | |||
| ) |
| def denseUNet_best.trans_order | ( | imgSAIs | ) |
| def denseUNet_best.trans_SAIs_to_LF | ( | imgSAIs | ) |
| denseUNet_best.batch_size |
| denseUNet_best.data_path |
| denseUNet_best.dataset_path |
| denseUNet_best.DEPLOY_PATH = './scripts/denseUNet_deploy.prototxt' |
| denseUNet_best.flow_color_list |
| string denseUNet_best.MOD = 'test' |
| denseUNet_best.MODEL_PATH = './backup/denseUNet_best.caffemodel' |
| denseUNet_best.model_path |
| denseUNet_best.n |
| string denseUNet_best.OUTPUT_GT = './output/GT' |
| denseUNet_best.output_GT_path |
| string denseUNet_best.OUTPUT_PREDICT = './output/predict' |
| denseUNet_best.output_predict_path |
| denseUNet_best.SAI = 25 |
| denseUNet_best.sai |
| denseUNet_best.script_path |
| denseUNet_best.script_test_path |
| denseUNet_best.script_train_path |
| float denseUNet_best.SHIFT_VAL = 0.77625 |
| denseUNet_best.shift_val |
| denseUNet_best.snapshot_path |
| denseUNet_best.solver = caffe.get_solver(SOLVER_PATH) |
| denseUNet_best.SOLVER_PATH = './scripts/denseUNet_solver.prototxt' |
| denseUNet_best.solver_path |
| denseUNet_best.src_color |
| denseUNet_best.test_img = cv2.imread('./test.png', 1) |
| denseUNet_best.test_list |
| denseUNet_best.TEST_PATH = './scripts/denseUNet_test.prototxt' |
| denseUNet_best.test_range |
| denseUNet_best.TESTSET_PATH = './datas/face_dataset/face_test_9x9' |
| denseUNet_best.threshold |
| denseUNet_best.tot |
| denseUNet_best.TRAIN_PATH = './scripts/denseUNet_train.prototxt' |
| denseUNet_best.TRAIN_TOT = 1207 |
| denseUNet_best.TRAINSET_PATH = './datas/face_dataset/face_train_9x9' |
Main ##########.