|
| def | denseUNet_best.make_colorwheel () |
| | Public Function ##########. More...
|
| |
| def | denseUNet_best.flow_uv_to_colors (u, v, convert_to_bgr=False) |
| |
| def | denseUNet_best.flow_to_color (flow_uv, clip_flow=None, convert_to_bgr=False) |
| |
| def | denseUNet_best.trans_SAIs_to_LF (imgSAIs) |
| |
| def | denseUNet_best.trans_order (imgSAIs) |
| |
| def | denseUNet_best.shift_value_5x5 (i, shift_val) |
| |
| def | denseUNet_best.index_picker_5x5 (i) |
| |
| def | denseUNet_best.image_data_center (batch_size=1, data_path=None, source='train_source') |
| |
| def | denseUNet_best.image_data (batch_size=1, data_path=None, source='train_source', sai=25) |
| |
| def | denseUNet_best.input_shifting (center=None, batch_size=1, sai=27, shift_val=0.7) |
| |
| def | denseUNet_best.slice_warp (shift, flow_h, flow_v, sai) |
| |
| def | denseUNet_best.slice_warp2 (shift, flow_h, flow_v, sai) |
| |
| def | denseUNet_best.change_order (imgs, batch_size) |
| |
| def | denseUNet_best.l_loss (imgs, lables, batch_size) |
| |
| def | denseUNet_best.denseUNet (input, batch_size) |
| | Fundamental Network ##########. More...
|
| |
| def | denseUNet_best.denseUNet_train (script_path=None, data_path=None, tot=1, sai=25, shift_val=0.7, batch_size=1) |
| | Network Generator ##########. More...
|
| |
| def | denseUNet_best.denseUNet_test (script_path=None, data_path=None, tot=1, sai=25, shift_val=0.7, batch_size=1) |
| |
| def | denseUNet_best.denseUNet_deploy (script_path=None, batch_size=1, sai=25, shift_val=0.7) |
| |
| def | denseUNet_best.denseUNet_solver (script_train_path=None, script_test_path=None, solver_path=None, snapshot_path=None) |
| | Solver Generator ##########. More...
|
| |
| def | denseUNet_best.denseUNet_runner (script_path=None, model_path=None, src_color=None, n=None) |
| | Runner ##########. More...
|
| |
| def | denseUNet_best.denseUNet_tester (script_path=None, model_path=None, dataset_path=None, output_predict_path=None, output_GT_path=None, test_range=1) |
| | Tester ##########. More...
|
| |